Automatic model parameter determination to fit IBR behavior.

Willy Nzale, *EMTP* Victor Velar, *COORDINADOR*

info@emtp.com

Content

- I. Tool development capability of EMTP
- II. Automatic model parameter determination
- III. The IBR data fit tool
- IV. Case study
- V. Conclusions

I. Tool development capability of EMTP

I. Tool development capability of EMTP

💒 Circuit2.ecf	- EMTPWorks																	- 0 ×	×
File	Home Options	View	Design	Short-circ	uit Simul	ılate	ETRV	E-Energize	E-intercon	nect	Import								
	🐰 Cut 🛛 🖺 Paste	Special	🇐 Undo	🗈 Duplicate	😽 Select All	I	<table-cell> Point</table-cell>	🕂 Draw Signal	I *	•	🕑 Orientation	🖊 Line	Rectangle	🔎 Arc	👬 Quick Find Object name				
	🛅 Сору		陀 Redo	🔀 Delete	Deselect	All	饏 Zap	7 Move	Due		💈 New Breakout	T Text	🔲 Rounded F	Rect 🔓 Point	👬 Advanced Find				
Save Save As	🖺 Paste				😽 Invert Sel	election	🥒 Name	💡 Attribute Pr	obe	berties		😋 Polygor	n 🔵 Ellipse		👬 Property Browser				
File	Clipboard			Edit				Tools		С	perations		Draw Graphics	;	Find				
E_Energiz	ze_sympatheticInrush	- Copy.ed	f Circu	uit2.ecf 🗙												1	⊋ Pa	rts 🔹	×
<													3					arts by Library Control Control Functions DC E_EnergizeVariants E-Interconnect ETRV Exciters And Governors Flip Flops FMI Lines Load Models Machines Machines Mathers Nonlinear Options Phasors Power Electronics Protection Pseudo Devices	

I. Tool development capability of EMTP

C:\Willy_Nzale\PGSTech\Henry\Pro	ject_IBR_Data_Fit\Mes_tests\testcircuit9\L. ``_Benchmark_PV_example.ec	f - EMTPV	Vorks			– 0 ×
File Home Options	View Design Short-circuit Simulate ETRV E-Energize	e E-ir	nterconnect IBR_data_fit Parametric	Import		
Open IBR_data_fit interface						
Open IBR_data_fit documentation						
Open IBR_data_fit		_				
IBR_data_fit panel: [::::!_Benchmark_	PV_example.ecf	• ×	Benchmark_PV_example.ecf			➡ Parts
Steps	Optimisation definition					Parts by Library
Stop 1: Soloot parameters						Control Control Functions
Step 2: Simulation data definition			AB	С	D	▷ DC
Step 3: Optimisation definition	Set parameters for Particle Swarm Optimisation (PSO) metho	od				 E-Interconnect ETRV
	Number of particles 5					Exciters And Governors
	Inertia coefficient (w)	- 11				 Flip Flops FMI
	Inertia Weight Damping Ratio (kappa) 0.99	- 11				▷ IBR_data_fit
	Social acceleration coefficient (c1) 2.0	- 11				▷ Lines ▷ Load Models
	Maximum number of iterations 10	- 11				 Machines
	Cost function type Sum Absolute Error					 Meters Nonlinear
	Convergence tolerance 1	%	-control K _a 1.2			 Options
			λ-control K ₁ 7.4 ×			Parameter Sweep Phasors
	Save data					 Power Electronics
IBR data fit version: 1.0			PVPark1		v VM IBR_data_fit_Sin ?v ♀ ♀ scope	Protection Broude Devices
						Renewables
						RLC Branches Simulial PUL
			AVM 75.015MVA		Pk:50.01 3-phase	 SimulinkDLL Sources
			120kV Q-control		GR:0.00 FOIL Ik1:0.24/_2.91 60Hz	Switches
					BUS1	 Symbols Transformations
				BR Data Fit		Transformers
				/Park_d dwj	afault1	
					2 2.1 0	
			IBR_data_fit	Meas_Data	I	
				BR <u>c</u> data_fit_Meas_da	ata	
		\checkmark	Reference s	/ signal	5	✓
<		>	<		>	

Context:

- Let's consider an IBR plant connected to a grid. The plant and the grid are modeled in EMTP, but we do not know the settings of some parameters in the IBR model (controller gains, time constants, etc...).
- On-site measurements of the physical plant response in some operating conditions are available.
- A tool has been created in EMTP to automatically determine some unknown IBR plant parameters values by fitting the IBR model response to on-site measurements.

Context:

- The tool performs the following tasks automatically:
 - Assign values to some parameters of the plant model,
 - simulate the model and get the plant response,
 - compare the simulation results with expected waveforms (experimental measurements),
 - update/modify parameters values and redo the process until the perfect match is found.
- Parameters update process is performed using an artificial intelligence method known as the particle swarm optimization (PSO) algorithm.

An overview or the particle swarm optimization (PSO) algorithm:

- Several entities (particles) are searching for the best solution.
- It is an iterative process (instant1, instant2, instant3, etc...).
- > At each iteration (instant), each particle has a **position**, a **velocity** and a **cost**.
- > At each iteration (instant), each particle position is updated based on past knowledge.

PSO applied to parameter determination Ex: estimating the PI controller gains of the reactive power control

Cost function:

 $\left|f_{Exp}(i) - f_{sim}(i)\right|$

i=N

The blue line represents the on-site measurement of the plant response to a Q-step change

Each value of K_p and K_i (a particle position) yields a specific plant response (red line)

PSO applied to parameter determination Ex: estimating the PI controller gains of the reactive power control

The PSO algorithm performs iterations and stops as soon as the cost associated to a particle gets lower than a predefined threshold. The corresponding particle value is taken as the final solution (K_p and K_i).

The automatic model parameter determination has been implemented in EMTP using the tool development capability presented at the beginning. The next section presents the tool itself.

Launch the tool

Step 1 : Select parameters to vary

C:\Program Files (x86)\EMT	PWorks 4.2.0\Toolboxes\IBR	_data_fit\Examples\IBR_c	lata_fit\EPRI_Be	nchmark_PV_exa	mple.ecf - EMT	PWorks						– o >	<
File Home Optio	ns View Design	Short-circuit Simula	ate ETRV	E-Energize	E-interconnect	t IBR_data_fit	Parametric	Import					
Open IBR_data_fit interface													
Open IBR_data_fit documentation	1												
Open IBR_data_fit													
IBR_data_fit panel: EPRI_Bench	nmark_PV_example.ecf				• × EF	PRI_Benchmark_PV	_example.ecf	×			₹	Parts 🔹	×
Steps	IBR	device parameters	selection								^	Parts by Library	~
Step 1: Select parameters	Select the parar	neters to optimise ar	id set the bou	Indaries								 Control Control Functions DC 	
	Selected device name	PVPark1				PVPar	k1		?v ♀ ?v	IBR_data_fit_Sim_data — ⊳ scope		 E-Interconnect ETRV 	
	Parameters	Default valu	e Min value	Max value	_Δ	W/m ² 0						Exciters And Governors Elin Flons	
	□Ngen	45		_									
	□Freq	60			_	AVM 75.0	15MVA	Pk:50.01	3-phase			▷ IBR_data_fit	
	□Vgrid_kVRMSLL	34.5				120k Q-co	v ntrol	Ik1:0.24/_:	_2.91 60Hz	v1:1.00/_2.9 100 km	SI	▷ Lines	
	□Vpoi_kVRMSLL	120							[]	BUS1	t	Load Models Machines	
	□Vgen_kVRMSLL	0.575			_		ІВ	R Data Fit		TLM_12	-1 2	 Machines Meters 	
	□Vdc_kV	1.264			-			Park d dwi	1			Nonlinear	
	□includeZigZagTransfo	1					1 01	un <u>_</u> u.uwj	fault1 abcg	50 km ^{BUS3}	75	D Options	
	□ZigZag_R0_ohm	0.1265			_				2 2.1 0	V1:1.00/ 2.9 + CP		Parameter Sweep Phasers	
	□ZigZag_L0_H	0.3831e-3			-					TLM_13	TL	 Power Electronics 	
	□Sgen	1.667								50 km	В	Protection	
	□Qfilt	75										Pseudo Devices	
	□Rchoke	0.005			-						4	Renewables BLC Branches	
	□Lchoke	0.15										SimulinkDLL	
	□includeCollGrid	1										Sources	
	□R_Coll_Grid_Ohm	0.1265			-					BUS5		Switches	
	□L_Coll_Grid_H	0.3831e-3		_								 Symbols Transformations 	
	□C_Coll_Grid_F	7e-6										 Transformers 	
	□Ngen_in_service	30			-					N 30 MW			
	□QC_select	1		_									
	□Qpoi_pu	0											
	□pf_poi	1											
	□Vpoi_pu	1											
	□PC_select	1											
	Dref noi	1									× ×		- 1
<					>						/		

Step 2 : Simulation data definition

Steps	Simulation data definition	On-site measurements data
Step 1: Select parameters	Reference and observed signals scopes names	(reference) are saved in a
Step 2: Simulation data definition	Reference data signal scope: "IBR_data_fit_Meas_data"	.dat file.
	Observed data signal scope: "IBR_data_fit_Sim_data"_	
	Define observation interval	
	Observation start time 1.0 s	A scope is added to the
	Observation stop time 2.6 s	EMTP circuit with the name
		IBR_data_fit_Sim_data at
	Save data	the same location where on-

site measurement had been performed.

Step 3: Optimization definition

Steps	Optimisation definition	
Step 1: Select parameters Step 2: Simulation data definition	Select the optimisation method PSO -	
Step 3: Optimisation definition	Set parameters for Particle Swarm Optimisation (PSO) method	
	Number of particles 5	
	Inertia coefficient (w) 1	
	Inertia Weight Damping Ratio (kappa) 0.99	
	Personal acceleration coefficient (c1) 2.0	
	Social acceleration coefficient (c2) 2.0	
	Maximum number of iterations 10	
	Cost function type Sum Absolute Error	
	Convergence tolerance 1 %	
	Save data	
IBR data fit version: 1.0		

Final step: get optimization results

Optimization results are available in a text file located inside the _pj folder with the name IBR_data_fit_Optimization.log

IBR_data_fit_Optimization.log - Notepad File Edit Format View Help Particle 4: Parameter WPC_Kp_Q = 1.3271973499085592 Parameter WPC_Ki_Q = 7.4500000000000 Fitting Error = 0.5172316907716248% Particle 5: Parameter WPC_Kp_Q = 1.18000000000000 Parameter WPC_Ki_Q = 7.4218384656006595 Fitting Error = 0.112517674621109% Beginning of iteration 4. Particle 1: Parameter WPC_Kp_Q = 1.0649655410124638 Parameter WPC Ki Q = 7.840239892782372 Fitting Error = 1.1460413928558186% Particle 2: Parameter WPC_Kp_Q = 1.06561883335176 Parameter WPC Ki Q = 8Fitting Error = 1.3640260917430044% Particle 3: Parameter WPC_Kp_Q = 1.1522625841229421 Parameter WPC_Ki_Q = 7.415175994984397 Fitting Error = 0.23050843701221338% Particle 4: Parameter WPC Kp Q = 1.280909012068068Parameter WPC_Ki_Q = 7.809435885968085 Fitting Error = 0.7711510602746205% Particle 5: Parameter WPC Kp Q = 1Parameter WPC_Ki_Q = 7.411453598670608 Fitting Error = 0.9568641242589233% **Optimal parameters values** Parameter WPC_Kp_Q: 1.18 Parameter WPC Ki Q: 7.422 Final Fitting Error: 0.112517674621109%

Х

- NON-WECC model \rightarrow More challenging fitting
- Simple control blocks \rightarrow difficult to translate to a more complex model
- NON WECC model \rightarrow Almost equivalent to a Black Box model for practical effects

PPC Parameter Calibration with a Q Step Change of 20%

of the Nominal Power of the PV Park

Default values

CASE 1: Default values for the REPC WECC_PV_Park Model

Parameter Kp_REPC = 0.5 Parameter Ki_REPC = 2.5 Fitting Error = 10.75%

CASE 2: PSO Optimisation of Parameter Kp_REPC and Ki_REPC with variation intervals set to [0-20]

Q/V control - RE	PCA model	
Voltage droop control	droop control	
Time constant Tfltr	0.02	s
Proportional gain Kp	1.40945	pu
Integral gain Ki	1.2812	pu
Lead time constant Tft	0	s
Lag time constant Tfv	0.05	s
Voltage Vfrz	0.7	pu
Compensation resistance Rc	0	pu
Compensation reactance Xc	0	pu
Compensation gain Kc	0.02	pu
Upper limit on deadband emax	0.1	pu
Lower limit on deadband emin	-0.1	pu
Lower threshold for deadband dbd1	0	pu
Upper threshold for deadband dbd2	0	pu
Upper limit Qmax	0.436	pu
Lower limit Qmax	-0.436	pu
tput P and Q command revise time	0.001	s

Optimal parameters values Parameter Kp_REPC: 1.40945 Parameter Ki_REPC: 1.2812 Final Fitting Error: 7.27%

Οı

CASE 3: PSO Optimisation of Parameter Kp_REPC and Ki_REPC with variation intervals set to [0-5]

Optimal parameters values
 Parameter Kp_REPC: 0
 Parameter Ki_REPC: 0.969
 Final Fitting Error: 1.5%

CASE 1: Manually adjusted parameters of the WECC

REGC_A+REEC_D Control Model

CASE 2: PSO Optimisation of Parameter Tg_REGC_A with

variation interval set to [0.005-0.05]

CASE 3: PSO Optimisation of Parameters of the REEC_D Kqv_REEC_D [0-5] (2); Kvi_REEC_D [0-5] (0.8) (with Iqrmax and Iqrmin at maximum)

Final Fitting for a 3ph-g fault

V. Conclusions

V. Conclusions

- The initial adjustment of the model parameters is extremely important.
- The IBR Data Fit Tool proved to be particularly effective when the ranges of variation of the parameters to be calibrated were shortened.
- The IBR Data Fit Tool is very effective for finer adjustments.
- The adjustment of non-WECC models (simplified) was more difficult and the IBR Data Fit Tool was particularly useful in this case.

References

B. Poudel, B. Bhandari, E. Amiri, P. Rastgoufard, T. E. Field and R. A. McCanne, "*Interconnection Study and Optimization of Grid Connected Photovoltaic System Using Electromagnetic Transient Program*," 2021 IEEE Kansas Power and Energy Conference (KPEC), 2021, pp. 1-6, doi: 10.1109/KPEC51835.2021.9446233.

